Radiation-Induced Alterations of Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stem Cells
نویسندگان
چکیده
While human mesenchymal stem cells (hMSCs), either in the bone marrow or in tumour microenvironment could be targeted by radiotherapy, their response is poorly understood. The oxic effects on radiosensitivity, cell cycle progression are largely unknown, and the radiation effects on hMSCs differentiation capacities remained unexplored. Here we analysed hMSCs viability and cell cycle progression in 21% O2 and 3% O2 conditions after medical X-rays irradiation. Differentiation towards osteogenesis and chondrogenesis after irradiation was evaluated through an analysis of differentiation specific genes. Finally, a 3D culture model in hypoxia was used to evaluate chondrogenesis in conditions mimicking the natural hMSCs microenvironment. The hMSCs radiosensitivity was not affected by O2 tension. A decreased number of cells in S phase and an increase in G2/M were observed in both O2 tensions after 16 hours but hMSCs released from the G2/M arrest and proliferated at day 7. Osteogenesis was increased after irradiation with an enhancement of mRNA expression of specific osteogenic genes (alkaline phosphatase, osteopontin). Osteoblastic differentiation was altered since matrix deposition was impaired with a decreased expression of collagen I, probably through an increase of its degradation by MMP-3. After induction in monolayers, chondrogenesis was altered after irradiation with an increase in COL1A1 and a decrease in both SOX9 and ACAN mRNA expression. After induction in a 3D culture in hypoxia, chondrogenesis was altered after irradiation with a decrease in COL2A1, ACAN and SOX9 mRNA amounts associated with a RUNX2 increase. Together with collagens I and II proteins decrease, associated to a MMP-13 expression increase, these data show a radiation-induced impairment of chondrogenesis. Finally, a radiation-induced impairment of both osteogenesis and chondrogenesis was characterised by a matrix composition alteration, through inhibition of synthesis and/or increased degradation. Alteration of osteogenesis and chondrogenesis in hMSCs could potentially explain bone/joints defects observed after radiotherapy.
منابع مشابه
Multilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells
Background: Mesenchymal stem cells (MSC) are a very promising transplantable stem cell source for a variety of cell replacement therapies. As the main source of MSC is bone marrow (BM), most of studies have been done on BM-derived MSC (BM-MSC). Umbilical cord (UC)-derived MSC (UC-MSC) which are recently introduced, is one of the good alternative source for these cells. The objective of this stu...
متن کاملBiological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow
Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملNaringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015